
A Very Short Survey of Solvers

Theo Diamandis

February 4, 2023

1



Review: Conic Programs

I Most solvers work with the conic form of a problem:

minimize cT x

subject to Fx + g �K 0
Ax = b

I Modeling systems (e.g., Convex.jl) convert a problem to conic form by rewriting
constraints f (x) ≤ t as conic inequalities

xTPx+ ≤ t ⇐⇒ ‖(P1/2x , (t − 1)/2)‖2 ≤ (t + 1)/2

‖X‖2 ≤ t ⇐⇒
[
tI X
XT tI

]
� 0

2



First-order methods: gradient descent and friends

I Gradient method with step size αk (constant or from line search):

x (k+1) = x (k) − αk∇f (x (k))

I Pros: inexpensive iterations

I Cons: often very slow convergence (can’t get accurate solns); sensitive to scaling

I Extensions (proximal gradient, accelerated gradient) are faster

First-order algorithms 4



Decomposition methods implement these ideas.

I Very popular method: Alternating Direction Method of Multipliers (ADMM)

I Advantages:
– Works on huge problems; often can be parallelized/distributed

– Often converges quickly to moderately accurate solution

I Disadvantages:
– Very sensitive to problem scaling

– Slow to get to high accuracy

I Examples: SCS, OSQP (QPs only), COSMO.jl

Decomposition and splitting methods 6



ADMM: split problem into easier problems

I Idea: min. f (x) + g(x) → min. f (x) + g(z) s.t. x = z

I Form the augmented Lagrangian (helps with smoothness & convergence)

L(x , z , ν) = f (x) + g(z) + νT (x − z) + (ρ/2)‖x − z‖2.

I Iterate:
x (k+1) = argminx L(x , z(k), ν(k))

z(k+1) = argminz L(x (k+1), z , ν(k))

ν(k+1) = ν(k) + (x (k+1) − z(k+1))

Decomposition and splitting methods 7



Second-order algorithms use Hessian information

I Use Hessian (or approximate Hessian) information to accelerate convergence

I Converge very quickly for unconstrained or linearly constrained smooth problems

I Common method: L-BFGS(-B) (approximates Hessian)
– See Optim.jl and LBFGSB.jl

I Key parameter: line search (which controls the step size)

Second-oder algorithms 9



Second-order methods solve the optimality conditions

I In the unconstrained case, solve ∇f0(x) = 0.

I The Newton step ∆x at current iterate x (k) solves the system with ∇f0 replaced
by its first-order approximation around x (k):

∇f0(x (k)) +∇2f0(x (k))∆x = 0.

I Alternative interpretation: x + ∆x minimizes the second order approximation to f0
around x (k):

∆x = argmin
v

f0(x (k)) +∇f0(x (k))T v +
1
2
vT∇2f0(x (k))v .

Second-oder algorithms 10



Interior point methods

I Interior point methods deal with (smooth) conic programs by turning the
inequality constraints into part of the objective function

min. f0(x) → min. tf0(x)−
∑
i

log(−fi (x))

s.t. fi (x) ≤ 0

I Approximation improves as t →∞

I Different cones have different associated barrier functions

I Must start with feasible point
– Enough to know a feasible point for each inequality individually
– Primal-dual methods get around this & are more robust

Interior point methods 12



Interior point methods are very fast and accurate

I Often converge in <100 iterations (and good worst-case complexity)

I Quadratic convergence to machine precision when close to the optimal (very
different than first order methods!)

I Implementations: Hypatia.jl, ECOS, Mosek, Gurobi (QCQPs)

I Usually needed for poorly scaled problems (e.g., many SDPs)

Interior point methods 13



How to choose a solver?

I Choose an interior point method if you...
– need a very accurate solution

– have a poorly scaled problem

– have a small to modest-sized problem

I Choose a first-order method if you...
– have a very large problem (but if unconstrained, LBFGS works great)

– don’t need an accurate solution (common in machine learning)

I https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers

Conclusion 15

https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers

	First-order algorithms
	Decomposition and splitting methods
	Second-oder algorithms
	Interior point methods
	Conclusion

