
Semidefinite Programs

Theo Diamandis

February 4, 2023

In this lecture, we will very briefly look at semidefinite programs (SDPs) and one of
their important use cases: relaxations of nonconvex problems. However, these problems
come up in a variety of contexts that we don’t have time to cover in this course. Convex
functions that can be represented using positive semidefinite constraints include the largest
and smallest eigenvalues of a matrix, the nuclear and operator norms of a matrix, and the
quantum entropy function.1 This lecture draws from MIT’s 6.256 (which I highly recommend
if you’re interested in state-of-the-art SDP use cases, like sum-of-squares programming) and
Stanford’s EE364b.

1 Positive Semidefinite (PSD) Matrices

First, We briefly review some properties of positive semidefinite matrices. All of the following
are equivalent:

• The (symmetric) matrix X ∈ Sn is positive semidefinite (PSD), which we also denote
as X � 0.

• All eigenvalues of X are nonnegative

• For any vector y ∈ Rn, yTXy ≥ 0

• There exists a factorization X = BTB for some B ∈ Rr×n, where r ≤ n.

Recall from the lecture on convex sets and functions that the set of positive semidefinite
matrices is a convex set. Additionally, we can show that the set of positive semidefinite
matrices is a cone2 directly from the fact that X is PSD if and only if yTXy ≥ 0 for all
vectors y. Finally, we will define the inner product on the PSD matrices as the trace:

〈X, Y 〉 = tr(XTY ) = tr(XY ),

1You can use these function directly in Convex.jl, and it will form an SDP under the hood.
2A set S is a cone if for every x ∈ S and θ ∈ R+, θx ∈ S.

1



where the last equality follows from the fact that X and Y are symmetric. Importantly,
every linear function of a PSD matrix X can be written as a trace:∑

ij

CijXij = tr(CX),

where we take C to be symmetric without loss of generality.

2 Semidefinite programming

A semidefinite program (SDP) is simply a convex optimization problem with a linear objec-
tive, linear constraints, and a semidefinite constraint:

minimize bTy

subject to
m∑
i=1

Aiyi + C � 0.

The form above is called the linear matrix inequality form of an SDP. The more common
‘standard form’ is

maximize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0.

(Recall how similar this looks to the ‘standard form’ of a linear program.) Sometimes the
maximization and minimization in the definitions are flipped. Although the ‘standard form’
of an SDP only has affine constraints, the constraint X � 0 is convex and tractable, so we
can compose this PSD constraint with any other convex constraint.

3 Semidefinite relaxations

One important use case of SDPs is in the relaxation of nonconvex problems. As an example,
we will revisit the two-way partitioning problem from the duality lecture.

Two way partitioning problem. Recall that two way partitioning problem attempts to
partition n items into two sets. Let Wij be the cost of assigning items i and j to the same
set and −Wij be the cost of assigning them to different sets. The MAXCUT problem3 is a
famous example of this problem. The optimization problem is

minimize xTWx

subject to x2i = 1, i = 1, . . . , n.
(1)

3https://en.wikipedia.org/wiki/Maximum_cut

2



This problem is nonconvex due to the binary constraint on x. However, we can still write
the dual function (see the duality lecture for details)

g(ν) =

{
−1Tν W + diag (ν) ∈ Sn+
−∞ otherwise.

The associated dual problem is

maximize − 1Tν

subject to W + diag (ν) � 0.
(2)

We recognize the dual problem as a semidefinite program.

Semidefinite relaxation. Another approach to bounding the optimal value of the original
problem is to construct a convex relaxation directly. Define X = xxT . We will rewrite the
objective as

xTWx = tr(xTWx) = tr(WxxT ) = tr(WX),

where we used the cyclic property of the trace. The constraint that x2i = 1 is equivalent to
diag

(
xxT

)
= diag (X) = 1. Thus, the original problem is equivalent to

minimize tr(WX)

subject to diag (X) = 1

X � 0

rank (X) = 1.

The rank one constraint means that X has the form xxT . Unfortunately, this constraint is
not convex. We form the convex relaxation by simply dropping it:

minimize tr(WX)

subject to diag (X) = 1

X � 0.

(3)

Since the feasible set for this problem is no smaller than the feasible set for the original, its
objective value is a lower bound on the original problem. In fact, if an optimal solution X?

is rank one, then it is also a solution to the original problem. In addition, note that the dual
of the nonconvex problem is exactly the dual of the semidefinite relaxation.

Recovering a feasible solution. In general, the solution X to the semidefinite relax-
ation (3) is not feasible in the original problem (1). One way to recover a solution is to
generate samples i = 1, . . . , N as

x(i) ∼ N (0, X?),

3



then take x̂(i) = sign(x(i)). We use the solution that has the lowest cost among the generated
solutions. For some particular x̂, we have

E[x̂ix̂j] =
2

π
arcsin(Xij).

This means that

E
[
x̂TWx̂

]
=

2

π
tr(W arcsin(Xij)).

With a modest number of samples, one of our samples will have an objective value below
the expectation with high probability. Naturally, we may wonder how good this Gaussian
randomization does. Let’s define a few quantities:

• plb = tr(WX?), the optimal solution to the SDP, which lower bounds (1).

• pexpected = E
[
x̂TWx̂

]
= 2

π
tr(W arcsin(Xij)), where we generate x̂ as described above.

• p?, the true optimal value for (1).

• pub = x̂TWx̂, a feasible value for (1) for a particular x̂.

We have that
plb ≤ p? ≤ pexpected.

This means that the true optimal value is between 2
π

tr(W arcsin(X?)) and tr(WX?), and
we can generate a x̂ that gives a pub below the expected value pexpected without too much
effort. For more guarantees about these types of results, see Goemans and Williamson’s
work [GW95], which provides a very good constant factor bound for the MAXCUT problem,
and Nesterov’s [Nes98] generalization to a larger class of problems.

4 Cones and generalized inequalities

In this section, we (very briefly) discuss convex cones, which allows us to write conic for-
mulations of convex optimization problems. This is the problem form handled by most
convex optimization solvers; Convex.jl is essentially just a tool to translate problems from
a ‘natural’ formulation into a conic one (and helps us avoid making mistakes in the process!).

Convex cones. Recall that a convex cone is a set K such that for all x, y ∈ K and θ1,
θ2 ∈ R+, the point θ1x+ θ2y is also in K. Some (somewhat silly) examples are

• reals K = Rn.

• zero cone K = {0}n.

We call a convex cone proper if it is closed (contains its boundary), solid (non-empty interior),
and pointed (contains no line). Some examples are

4



• nonnegative orthant K = Rn
+.

• second-order cone K = {(x, t) ∈ Rn ×R | ‖x‖2 ≤ t}.

• positive semidefinite cone K = Sn+.

In some sense, the proper cones correspond to our intuition of what a cone should look like.

Generalized inequalities. Equipped with a proper cone K, we can define a generalized
inequality

x �K y ⇐⇒ y − x ∈ K.

For example, if K = Rn
+, then

x �Rn
+
y means that xi ≤ yi for all i.

Since this case is so common, we usually just write x ≤ y. As another example,

X �Sn
+
Y means that Y −X is PSD.

Again, since this case is so common, we usually just write X � Y . Many properties of
generalized inequalities are analogous to those of inequalities, but they do not generally
define a linear ordering: we can have both x 6� y and y 6� x.

General convex optimization problems. We can use generalized inequalities to define
convex problems more generally. The problem

minimize f0(x)

subject to fi(x) �Ki
0 for all i = 1, . . . ,m

Ax = b

is a convex optimization problem if f0 : Rn → R is convex and fi : Rn → Rki is Ki-convex
with respect to proper cone Ki (replace the inequality in the definition of convexity with
a generalized inequality using Ki). These problems have the same properties as convex
problems, i.e., they can (usually) be efficiently solved, strong duality (often) holds, a locally
optimal point is globally optimal, and so on.

Conic formulations. A special case of the above formulation is

minimize cTx

subject to Fx+ g �K 0

Ax = b,

where K is potentially a product cone, i.e., K = K1 × K2 × · · ·Kp. This is the ‘general
form’ used by most conic solvers, which support a standard set of cones. Almost all convex

5



optimization solvers support the nonnegative orthant and the second-order cone. Many
also support the semidefinite cone, the exponential cone, and the power cone. The job
of Convex.jl is to transform your problem an equivalent problem of this form and then
to transform it back to give you your variable values and optimal value. In terms of the
problem classes we’ve seen,

LPs ⊂ QPs ⊂ SOCPs ⊂ SDPs ⊂ Conic programs.

Conic programs with the cones listed above cover most of the problems we want to solve in
practice. However, it can be advantageous from a modeling and an algorithmic perspective
to use additional ‘exotic cones’, which is an area of current research (see, for example, the
Hypatia.jl solver [CKV22]).

References

[CKV22] Chris Coey, Lea Kapelevich, and Juan Pablo Vielma. “Solving natural conic for-
mulations with Hypatia. jl”. In: INFORMS Journal on Computing 34.5 (2022),
pp. 2686–2699.

[GW95] Michel X Goemans and David P Williamson. “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming”. In: Journal of the ACM (JACM) 42.6 (1995), pp. 1115–1145.

[Nes98] Yu Nesterov. “Semidefinite relaxation and nonconvex quadratic optimization”.
In: Optimization methods and software 9.1-3 (1998), pp. 141–160.

6


