Applications: Approximation, Machine Learning

Theo Diamandis

February 4, 2023

In this lecture, we will look at a variety of approximation problems, which come up
in almost every field under different names, including ‘reconstruction’ in signal processing,
‘regression’ or ‘estimation’ in statistics and machine learning, ‘design’ in several engineering
fields, and so on. Our convex optimization framework allows us to easily incorporate prior
knowledge as constraints or additional objective terms. On homework, we’ve already seen
cases where incorporating prior information leads to a much better estimator than traditional
methods. This lecture largely follows [BV04, Ch. 6-7].

1 Approximation
In class, we’ve already seen a number of problems of the form
minimize |[[Ax — 0|, (1)
where the problem data are A € R"™*™ and b € R™ with m > n. We will call
r=Ar —b
the residual. The solution z* to (1) has several interpretations:

e geometry: Ax* is the point in R(A) closest to b, as measured by || - ||

e estimation: x* is the maximum likelihood estimate of x under a linear measurement
model y = Ax + v where v is the measurement noise. Note that the choice of norm
implies a prior on the distribution of v (or a prior on v would imply the ‘correct’ norm
to use).

e design: Ax* is a design, where = are the design variables and b is the target design.

We've already seen examples of this problem for the ¢;, ¢5, and /., norms. In this lecture,
we’ll examine the properties each of these norms (and other, more general penalty functions),
induce in the residual.

6 r linear
quadratic

deadzone linear
S Huber
log barrier

Figure 1: Penalty functions.

Penalty function approximation. More generally, we can consider the problem
minimize Z o(ri)
i=1 (2)

subject to r = Ax — b,

where ¢ : R — R is a convex penalty function. Many norms fit into this framework.
For example, if we take ¢(u) = u?, then we recover an equivalent problem to f norm
minimization. We can even approximate the ¢, norm by taking ¢(u) = e* (recall the
softmax function). Other penalty functions include deadzone-linear with width a,

¢(u) = max{0, |u| — a},
the Huber penalty function with parameter a,
u? if Ju| < a,
$(u) = :
a(2lu| —a) otherwise,
and the log-barrier function with limit a,

S(u) = {—a2 log(1 — (u/a)?) |u| <a

00 otherwise.

Think about what each of these penalties promotes in the residuals r. Figure 1 plots each
of these penalty functions, and Figure 2 shows the histogram of residuals for a randomly
generated problem. Of course, we can consider asymmetric penalty functions as well.

Robust norm approximation. We consider the norm approximation problem where data
matrix A is not known exactly. Instead, we know that

Ae ACR™™",

abs

10.0

7.5
5.0

quad

2.5

0.0

20
15
10

deadzone

il
L

10.0
7.5

5.0

-1 0 1
-1 0 1
-1 0 1

20 |

15 +

10

5_

0 = ;
-1 0 1

-3 -2

huber

2.5

0.0

-3 -2

log

Figure 2: Residuals for the approximation problem under a number of penalty functions.

which we assume is nonempty and bounded. The robust approzimation problem is to mini-
mize the worst case error over the uncertainty set A:

minimize sup ||Az — bl|5.
AcA
While this problem is always convex, its tractability depends on the norm used and the

description of the uncertainty set A. If this set is finite, the problem is easy to solve. Here,
we consider the case where A is a norm ball

A={A+U||U|l < a},

where we take || - || to be the spectral norm (i.e., the maximum singular value). The worst
case error is attained for U = auv” where
Ar —b x
| Az — b2’]l

The resulting worst-case error is
IAz = bll2 + all]>-

Thus, solving this robust approximation problem is an SOCP. (Note that it is not a regular-
ized least squares problem since we do not square both terms.)

Quantile regression. Consider the tilted ¢, penalty with parameter 7 € (0, 1),
O(u) = Tuy + (1= 7m)u_ = (1/2)u] + (T — 1/2)u.

The quantile regression problem chooses x to minimize the sum of these penalties. Consider
what happens if we choose 7 = 0.5. Then we recover the ¢; regression problem, which
assigns an equal penalty to over- and under-estimating the target b with our predictor Ax.
Furthermore, we’d expect around half of the residuals (on the ‘training data’) r = Ax — b €
R™ to be negative and half to be positive. However, if we set 7 = 0.9, there is a 9x greater
penalty for over-estimating b than underestimating b. Roughly speaking, we expect that

T{i|r; >0} =({1—=7){i]|r; <0}

The 7-quantile of the optimal residuals is zero. Solving this problem with a number of 7’s
gives us a set of solutions {z"},cr which provide predictors for different quantiles of the
data. This can be useful if we want not only a point estimate but also upper and lower
bounds. You'll explore an example on homework.

1.1 Least norm approximation.

Sometimes, we have a data matrix A € R"*" such that m < n. In this case, there may be
many solutions to Ax = b. We will instead solve the least norm problem

minimize ||z||
subject to Ax =0,

which aims to find the smallest x (w.r.t. the chosen norm) that is a solution to Az = b.
Again, the solution z* has several interpretations:

e geometry: x* is the point in the set {x | Az = b} with minimum distance to 0
(measured in this norm).

e estimation: z* is the smallest estimate consistent with the (perfect) measurements

b= Ax.

e design: x* is the most ‘efficient” design that satisfies the requirements.

Recall the basis pursuit problem, where we seek to find the sparsest vector x consistent with
the measurements Ax = b. The ¢; norm is used as a convex approximation to the cardinality.

Example: Colorization. (From Convex Optimization additional exercises.) A m x n
color image is represented as three matrices of intensities R, G, B € R"™*", with entries in
[0, 1], representing the red, green, and blue pixel intensities, respectively. A color image is
converted to a monochrome image, represented as one matrix M € R™*", using

M =0.299R + 0.587G + 0.114B,

where the weights come from the ‘perceived brightness’ of each color. In colorization, we are
given the monochrome version of an image M and the color values at a handful of pixels. Our
goal is to guess the colors at the rest of the pixels. Since this problem is underdetermined,
we will do so by solving a least norm problem, where we minimize the total variation of
(R, G, B), which is an approximation of the spatial gradient, defined as

Rij — Ri j1
Rij — Rit1j
m—1n—1 G G
_ Y 2,7+1
tv(R,G,B) = GG
Bij — Bijn
| Bij — Biv1j] ||,

Thus, we can colorize an image by solving the optimization problem
minimize tv(R,G, B)
subject to M = 0.299R + 0.587G + 0.114B

known .

R’i - Rz) 1€ Iknown
known .

Gi = Gz) 1€]known
known .

B'L’ = Bz ; 1€ [known'

5

Figure 3: Original image (left), monochrome image with a few randomly colored pixels
(center) and its colorized verison (right).

An example using this technique is shown in Figure 3.

1.2 Maximum Likelihood (ML) Estimation

In this section, we will examine the approximation problem through the lens of ML estima-
tion. We consider a family of probability distributions on R™ parameterized by a vector
x € R™ and with density p,. For a fixed y € R™, the likelihood function is p,(y). For
convenience, we work with its logarithm, the log-likelihood function, denoted ¢:

((x) = log px(y).

Maximum Likelihood Estimate. Consider the problem of estimating the parameter
vector x after observing a sample y. Perhaps we also have some prior information, x € C.
Then the mazimum likelihood estimate of = is a solution to the optimization problem

maximize £(z) = logp.(y)
subjectto z € C.

Note that y is problem data and not a variable here. This method is widely used and is
a useful common parent of many other problems. If p is log-concave, then this problem
is a convex optimization problem (which is the case for many distributions in practice.)
Sometimes, you'll have to make an additional change of variables in practice (e.g., using the
inverse of the covariance matrix 7! instead of ¥ as a variable.) Note that these ideas can
be extended to MAP estimation by using the conditional distribution.

Linear measurements with ITD noise. Consider the linear measurement model

T .
y=a,x+v, t=1,...,m.

The ML estimate is the solution to the problem
maximize {(z Z log p(yi — aj).

We assume p is log-concave, so that this problem is a convex optimization problem. Note
that it has the same form as the approximation problem we saw earlier. In fact, several
penalty functions are readily derived from common noise distributions.

e Gaussian Noise. When v; ~ N(u, o), the ML estimate is & = argmin, [|Az — y/|3

| Az =yl

e Laplacian Noise. When v; is Laplacian, the ML estimate is & = argmin,, |

e Uniform Noise. When v; is uniform on [—a, a], the ML estimate is any « such that
[Az =yl < a.

In fact, the penalty function problem,

maximize Zqzﬁ —alx),

can be interpreted as the ML estimate under a linear measurement model with noise density
p(z)=C-e),

where C1 = [e~ du. This formulation allows us to interpret the penalty problem sta-
tistically. For example, if ¢ increases rapidly for large values of u, this means that the noise
distribution has small tails.

Logistic regression. Consider a random variable z € {0,1}. We have data {(y;, z;)}/",
where y; € R" is a feature vector and z; € {0,1}. Binary logistic regression is the ML
estimation problem for the distribution

exp(zTy + w)
Nt exp(xTy +w)’

Here, z € R" and w € R are the variables (parameters of the distribution) and y € R" is
the feature vector. The log-likelihood function is then

= (zi(a"y + w) = log(1 + exp(z”y + w))) ,
=1

which is concave.

2 Regularized Approximation

Often, we want to tradeoff between minimizing || Az—b|| and minimizing ||x||. This regularized
approximation problem can be phrased as

minimize (w.r.t. RY) (||Az —b||, ||z]]),
where the two norms may be different. This problem has several interpretations

e estimation: We have a noisy linear measurement model y = Az + v and prior knowl-
edge that ||z|| is small.

e design: The linear model y = Az is only valid for small = (e.g., the first-order
approximation of a nonlinear function), or a small z is cheaper to build.

e robust approximation: A good approximation Ax =~ b is less sensitive to errors in
A than a good approximation with large x.

Recall from last lecture that these problems are solved by scalarization, i.e., we solve the
problem
minimize ||Ax — b|| + Aljz|

for varying values of A > 0.

Example: signal reconstruction. Consider a signal x € R” which we’d like to recover
given a noise-corrupted version of the signal x ... Here, we are considering one dimensional
signals (e.g., audio signals). This reconstruction can be phrased as the optimization problem

minimize ||z — Teo|| + Ap(2),

where we add a penalty to induce desired properties of the reconstruction (usually corre-
sponding to priors we have about the signal). For example, it is common to assume the
signal does not vary too rapidly compared to its sampling rate; i.e., we expect z; ~ x;,1. In
this case, we can use the quadratic smoothing penalty

n—1

Gquaa(r) = (w341 — 2:)” = || D3,

i=1

where D € R" X" is a first difference matrix. Sometimes, however, the original signal
varies rapidly as well (e.g., systems sending bits where a 1 is one value and a 0 is another).
Quadratic smoothing would dampen rapid variations in the reconstruction. A better penalty
in this case is the total variation penalty

n—1
ue(w) =D |wiy — x| = || Dafr.
=1

n regression, sometimes we introduce an offset variable z € R such that y; ~ al'z + 2 (where q; is our
‘feature vector’) and do not include this variable in the regularization.

Quadratic smoothing Total variation smoothing

10 10 10
time time time

Figure 4: Original signal (left), quadratic smoothing reconstruction (center), and total vari-
ation reconstruction (right). The total variation penalty better preserves ‘jumps’ in the
original signal.

Reconstructions using each of these penalties is given in Figure 4, where we use the {5 penalty
on || — xeor||. Of course, we could use a combination of the two penalties, which likely would
yield better results in practice with some tuning of the parameters.

3 Example: Sparse Regression

We revisit using the ¢; norm as a convex approximation to the cardinality function, denoted
card(z), which is the number of nonzero entries in x. This function appears in many
problems but unfortunately is not convex (it is quasiconcave though). Examples include
finding sparse design (e.g., a filter or circuit with minimum number of hardware components),
handling fixed transaction costs (e.g., for logistics planning), and estimating with outliers
(e.g., allow k arbitrary violations of the model). One popular applications is the sparse
regression problem

minimize card(z)

subject to ||Az — y|3 < 0,

where ¢ is a chosen tolerance.

The ¢, heuristic. The most common approach to tackle cardinality problems is to replace
card(z) with 7||z||; or add the regularization term ~|x|; to the objective, where v is a
parameter used to achieve a desired sparsity. Reformulating the sparse regression problem,

we have
minimize ||z||;

subject to ||Az —yl|2 < 6,
Other variants include the LASSO problem
minimize ||Az — yl|3
subject to ||z||; < 5,

or the basis pursuit denoising problem

minimize ||Az — yl|3 + v||z||:.

9

This heuristic is quite good; in fact, under some assumptions, it will reconstruct x exactly
with high probability.

Iterated weighted /; heuristic. In fact, we can do somewhat better that the ¢; heuristic
to minimize cardinality. Consider the following procedure:

o [etw=1
e Repeat

— Replace card(z) with || diag (w) z||; in the objective
— Solve the problem. Let the solution be z*
— Let w; = 1/(e + |2¥])

This procedure actually uses the approximation
z— 29

e+ 20

card(z) ~ log(1 + z/¢) ~ log(1 + 2°/¢) +

and solves the problem by linearizing this nonconvex function at each iterate. (This fact is
important if you have other terms in the objective or card in the constraints, since then you
should not ignore the constants and positive scaling factors.)

Solution polishing. After finding a solution & with required sparsity via the ¢; heuristic,
it is a good idea to ‘polish’ the solution. Fix the sparsity pattern of x to be that of and re-
solve the optimization problem with this sparsity pattern to obtain a final heuristic solution

T*.

4 Example: Minimax polynomial fitting

Consider some function y(t) for « < t < f. We sample this function at points ¢y,..., %,
which have corresponding functions values 1, ..., y,. Our goal is to fit a rational function
p(t)/q(t) to given data, while constraining the denominator ¢(¢) to be positive on the interval
[, B].2 We parameterize p and ¢ by vectors a € R™ and b € R™

p(t) =ao+ait + -+ ant™, q(t) =1+ bit + - byt
We want to find a and b that provide the best minimax rational fit to the data, i.e., that

solve
p(ti>
q (tz)

2Polynomial approximations are often used in practice. For example, check out the exp implementation in
Julia at https://github.com/Julialang/julia/blob/17cfb8e65ead377bf1b4598d8a9869144142c84e/
base/special/exp.jl#L188. which (with a few extra tricks) only needs a degree three polynomial to
get floating point accuracy.

minimize max
i=1,...k

1| -

10

20 -

true
approx 0.02 |-

0.01 -

10

Error

0.00

-0.01 -

-0.02 -

Figure 5: The function compared to its polynomial approximation (left) and the error be-
tween these two curves (right). The dashed lines indicate +u.

This problem is not convex; however, it is quasiconvex. Note that
p(t;)
q(t:)

where we use the fact that ¢ > 0. This allows us to solve this problem via a sequence of the
convex feasibility problem

max
i=1,....k

%

find a,b
st p(t) — q(t:)ys| < tq(t;) i=1,...k,

which is parameterized by t.
Now, we consider a specific instance of approximating the exponential function on the
interval [—3, 3]. The data is

ti=-3+6(0—-1)/(k—1), y = e, i=1,...,k,
where k& = 201. We consider a function f(¢) of the form

ag + ait + aqt?

t pu—
1) 14 byt + bot?’

where we require that 1 + bit; + bot? > 0 for all ¢ = 1,..., k. Solving this problem using
bisection method to a tolerance of 0.001 yields the approximation in Figure 5. The final
lower and upper bounds on the optimal value are (I,u) = (0.0224609375, 0.0234375).

5 Example: Support vector machine

The support vector machine (SVM) attempts to find a linear discriminator that approx-
imately separates two sets of points X = {zy,...,zx} and Y = {y1,...,ynm}. In other

11

words, we want to find a and b such that
alz; +b>0 and a’y; +b < 0.
Since the problem is homogenous in a and b, we instead work with
alz; +b>1 and aly; +b < —1.

Usually these two sets are not exactly separable, so we have some number of errors. We
solve the optimization problem

minimize ||a||s + 717 (u + v))

subject to a’z; +b>1—w;, i=1,...,N
aly; +b< 14w, i=1,....M
u>0, v>0.

The objective trades off between maximizing the margin 2/||al|s and minimizing the classifi-
cation error 17 (u+v). Of course, we can look at other discriminators, such as the quadratic
discriminant function

vl Pr;+ ¢ +r>1 and yl Py +q y; +r < —1.

Note that these lead to linear constraints in the variables, which are P, ¢, and r here.

References

[BV04] Stephen Boyd and Lieven Vandenberghe. Convez optimization. Cambridge univer-
sity press, 2004.

12

