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1 Convex Optimization Problem Classes

In this lecture, we will go over a number of classes of convex optimization problems, including
linear programs, quadratic programs, second-order cone programs, and geometric programs.
(We will see semidefinite programs later.) With software like Convex.jl, you neither need
to know the problem class your problem belongs to nor how to reformulate it into a standard
form. However, having some idea of the problem class will help you understand how hard
your problem is to solve and what kind of solution you can expect. Importantly, there are
specialized solvers for particular problem classes. Much of this lecture follows [BV04, Ch.
4].

Properties. Recall that a convex optimization problem is

minimize f0(x)

subject to Ax = b

fi(x) ≤ 0, i = 1, . . . ,m,

(1)

where x ∈ Rn is the decision variable and the functions f0, . . . , fm are convex. These
problems are particularly useful because

• All locally optimal points are globally optimal.1

• We can prove that a point is optimal (or provide a suboptimality gap, i.e., a certificate
that a point has objective value no worse than ε from the optimal value).

• They can be solved efficiently.

Let X denote the feasible set of (1) (which, importantly, is a convex set). Then x ∈ X is
optimal if and only if x ∈ X and

∇f0(x)T (y − x) ≥ 0 for all y ∈ X.
1We call x locally optimal if there is an R > 0 such that for all feasible z with ‖z−x‖2 < R, f0(z) ≥ f0(x).
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Figure 1: Illustration of optimality conditions. Blue dashed lines indicate level sets of f0,
and the red line indicates a supporting hyperplane at x?.

In general, we will call x? a solution or optimal point if the condition above holds, and we
will denote the optimal value p? = f0(x

?). If the problem is infeasible, then p? = ∞, and if
the problem is unbounded below, then p? = −∞ (usually this means you setup your problem
incorrectly). In other words, all feasible directions are aligned with the gradient, so a small
step in that direction will not decrease the objective. This condition has a nice geometric
interpretation. First, if ∇f0(x) = 0, then x is optimal because in any direction we move,
the objective increases. (Recall that for unconstrained convex problems, the optimality
condition is just that ∇f(x) = 0.) Second, if ∇f0(x) 6= 0, then −∇f0(x) defines a suporting
hyperplane to the feasible set X at the point x.

Tools of the trade A lot of the problems we’ll look at in the course are not necessarily
convex as written. We’ll use a number of transformations to transform these problems into
equivalent convex ones. Informally, we will say that two optimization problems are equivalent
if the solution of one is readily obtained from the solution of the other, and vice-versa. For
example, consider the optimization problem

minimize x21 + x22
subject to 2x1/(1 + x22) + 1 ≤ 0

(x1 + x2)
2 = 0.

This problem is not convex but is equivalent to the convex problem

minimize x21 + x22
subject to 2x1 + 1 + x22 ≤ 0

x1 + x2 = 0.

Often you will have to work with problems a bit to get them into a form that is tractable to
solve. Common transformations include
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• Adding slack variables for linear inequalities

• Introducing equality constraints

• Using the epigraph of a function

• Minimizing over a subset of variables (partial minimization)

• Doing a change of variables (e.g., log transform)

• Taking a monotone increasing function of the objective

• Dropping constants in the objective

Over this lecture, we’ll see these transformations come up in problem classes. Convex.jl

automates many of these transformations for you to find an equivalent problem to your input
that can be passed to a solver.

1.1 Linear program (LP)

In linear programs, the objective and constraint functions are affine. These problems com-
monly show up in operations research (e.g., scheduling, supply chain management, trans-
portation planning, etc.). They are of the form

minimize cTx+ d

subject to Gx ≤ h

Ax = b.

(2)

The feasible set of an LP (i.e., X = {x | Gx ≤ h and Ax = b}) is a polyhedron, and if the
problem is feasible, we can always find an optimal solution at a vertex.2 This fact is intuitive
when considering the geometry of the feasible set and the gradient of the objective:

X

x?

−∇f0(x) = −c

2This fact is important for the simplex method, which hops from vertex to vertex until it finds an optimal
solution.
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The dashed lines indicate level sets of −∇f0(x). If the negative gradient is orthogonal to a
face of the polyhedron, we can find a solution at the face’s vertices, although there will be
many solutions (i.e., points with the optimal objective value). Also note that we can always
drop constants in the objective without changing the optimal solution (but the optimal value
may change).

Sometimes you will see these problems written in the ‘standard form’

minimize cTx

subject to Ax = b

x ≥ 0.

This form is, in fact, equivalent to (2). We can see this by applying two tricks. First, every
number can be written as the sum of its positive and its negative part, i.e.,

x = x+ − x−,

where x+ = max{x, 0} and x− = max{−x, 0}. Note that x+, x− ≥ 0. Second, we can add
slack variables to turn inequality constraints in (2) to equality constraints:

Gx ≤ h ⇐⇒ Gx+ s = h, s ≥ 0.

These two tricks will come up often. Convince yourself that the ‘standard form’ of the LP
is indeed equivalent to our general form (2). While some of these tricks aren’t important
for us in this course, they are especially important for solvers, which usually specialize on a
particular form of the problem.

Example: transportation planning. First we consider a transportation planning prob-
lem where we want to ship goods from m sources to n destinations in a way that minimizes
the total shipping cost. Each source has a supply si and each destination has a demand dj.
The shipping cost from source i to destination j is cij. This problem can be formulated as

minimize
∑
ij

cijxij

subject to
∑
j

xij ≤ si, i = 1, . . . ,m∑
i

xij ≥ dj, j = 1, . . . , n

where s ∈ Rm
+ is the supply at each source, d ∈ Rn

+ is the demand at each source, cij is the
per unit shipping cost from i to j, and the variables xij are the amount of goods shipped
from i to j. Since the objective and all constraints are affine, this is an LP.
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Example: basis pursuit. Consider the problem of recovering a sparse vector x from a
linear measurements bi = aTi x, i = 1, . . . ,m:

minimize ‖x‖1
subject to Ax = b

(If you’re interested in applications of this problem, Google ‘compressed sensing’.) Recall
from the first lecture that we can reformulate `1 objectives into LPs via the epigraph and
the fact that |y| ≤ z ⇐⇒ −z ≤ y ≤ z. The equivalent problem is

minimize 1T t

subject to − t ≤ x ≤ t

Ax = b.

Note that the variables are t ∈ Rn and x ∈ Rn, and the inequality is taken componentwise.
Alternatively, we could split up x into its positive and negative parts and note that |y| =
y+ + y−. This trick gives the equivalent problem

minimize 1T (x+ + x−)

subject to Ax+ − Ax− = b

x+, x− ≥ 0.

Clearly, this problem is also an LP.

Linear-fractional program. It turns out that we can also solve problems of the form

minimize f0(x)

subject to Gx ≤ h

Ax = b,

(3)

where the objective is a fraction of two linear functions:

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}.

This problem is quasiconvex (we will talk about quasiconvexity shortly), but it is also equiv-
alent to the LP

minimize cTy + dz

subject to Gy ≤ hz

Ay = bz

eTy + fz = 1

z ≥ 0.

To show this equivalence, consider an x that is feasible for the original problem. Then
y = x/(eTx + f) and z = 1/(eTx + f) are feasible for the LP and give the same objective
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value. Thus, the optimal value of the LP is less than or equal to that of the original problem.
Reverse the argument by considering a feasible (y, z) and taking x = y/z where z 6= 0 (a
more careful argument must be made when z = 0). Thus the two problems have the same
optimal value and are equivalent insofar as the solution to one can be readily obtained from
the solution to the other.

1.2 Quadratic programs

A quadratic program replaces the linear objective with a quadratic one:

minimize (1/2)xTPx+ qTx+ r

subject to Gx ≤ h

Ax = b

where P ∈ Sn+, so the objective is convex. Again, our feasible set is a polyhedron. Clearly
the set of QPs is a strict superset of the set of LPs. In lecture 1, we saw the radiation
treatment planning problem, which is a bounded least squares problem and therefore a QP.

Portfolio optimization. Consider the problem of optimizing a portfolio of n assets. We
want to find the portfolio that maximizes the expected return while keeping the risk (mea-
sured by the variance of the returns) in control. Thus, our objective function is

f0(x) = E
[
µTx

]
− (γ/2)Var

(
µTx

)
,

where µ ∈ Rn is the return on each asset (a random variable), x ∈ Rn is our portfolio
allocation, and γ is a risk aversion parameter. Additionally, we will require a long-only
portfolio, i.e., x ≥ 0. Letting µ̄ = E[µ], we can write this problem can as a QP:

maximize µ̄Tx− (γ/2)xTΣx

subject to 1Tx = 1

x ≥ 0.

where Σ ∈ Rn×n is the covariance matrix of returns. The variable x represents the fraction of
the portfolio allocated to each asset, which is why we normalize it to sum to 1. Alternatively,
we could have used the constraint 1Tx ≤ B, where B is our total investment budget.

Pareto optimality. In the proceeding example, we have two objectives: the expected
return µ̄Tx and the risk −xTΣx. We want both of these to be small. In general, we cannot
minimize both of these objectives simultaneously; there’s some tradeoff. We say that xpo is
Pareto optimal if there is no other feasible point that is better for at least one objective and
no worse for any of the others. The set of pareto optimal points can be found by scalarization
of the objective and solving the resulting problem for a range of values of the scalarization

6



Figure 2: Pareto optimal frontiers for randomly generated instances of the portfolio opti-
mization problem (left) and regularized least squares problem (right). Note that we plot the
negative return in the portfolio optimization example.

parameters (usually taken to be on a log scale). Another example is the regularized least
squares problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖22,
where varying λ traces out the Pareto frontier.

Quadraticly constrained quadratic program (QCQP). A close relative of the QP is
the QCQP, which adds quadratic constraints:

minimize (1/2)xTP0x+ qT0 x+ r

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b.

Note that this class is a superset of the QP (let Pi = 0 for all i). If Pi ∈ Sn++, then the
feasible set is the intersection of m ellipsoids and the affine set {x | Ax = b}.

Rocket landing. Model predictive control (MPC), sometimes called receding horizon con-
trol, chooses the control input by repeatedly solving a convex optimization problem. In the
case of landing a rocket, we will discretize time from t = 0 to T into K steps. Thus, each
step has length h = T/K. At each time step, we solve a convex optimization problem to
determine the thrust force to apply. The solution generates a plan for the entire trajectory.
In a real control system, we execute one step of this plan and then re-solve the problem with
updated parameters and a smaller discretization step h. In this example, we’ll setup the
problem for t = 0.

The (discretized) rocket dynamics are given by

vk+1 = vk + (h/m)fk − hge3, and pk+1 = pk + (h/2)(vk + vk+1),

where pk ∈ R3 denotes the position, vk ∈ R3 denotes the velocity, fk ∈ R3 denotes the
thrust force at step k, m is the rocket mass (assumed constant for simplicity) and g is the
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gravitational acceleration. We are limited to thrusts fk less than some maximum Fmax. The
rocket starts at p(0) with velocity v(0), and we want to land the rocket at the origin at time
T , i.e., pK = 0 and vK = 0. Furthermore, the rocket must remain in the region

(pk)3 ≥ α‖((pk)1, (pk)2)‖2,

where α indicates the minimum glide slope (what type of convex set is this?). Finally, we
aim to find a trajectory that minimizes the (discretized) fuel use,

K−1∑
k=1

‖fk‖2.

Finally, putting this all together, we have the optimization problem

minimize
K−1∑
k=0

‖fk‖2

subject to vk+1 = vk + (h/m)fk − hge3, k = 0, . . . , K − 1

pk+1 = pk + (h/2)(vk + vk+1), k = 0, . . . , K − 1

‖fk‖ ≤ Fmax k = 0, . . . , K

(pk)3 ≥ α‖((pk)1.(pk)2)‖2, k = 0, . . . , K

pK = 0, vK = 0, p0 = p(0), v0 = ṗ(0).

For some videos of this idea in action, check out

• http://www.youtube.com/watch?v=2t15vP1PyoA

• https://www.youtube.com/watch?v=orUjSkc2pG0

• https://www.youtube.com/watch?v=1B6oiLNyKKI

• https://www.youtube.com/watch?v=ZCBE8ocOkAQ

1.3 Second-order cone program (SOCP)

The next step our hierarchy is the second-order cone program (SOCP). These problems have
the form

minimize fTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

This form is more general than LPs, QPs, and QCQPs. For example, we can write a QP as
an SOCP by introducing a slack variable t and writing

minimize qTx+ (1/2)t

subject to Dx ≤ d

xTQx ≤ t

Ax = b
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Note that xTQx ≤ t ⇐⇒ ‖(Q1/2x, (t− 1)/2)‖2 ≤ (t+ 1)/2.

Example: facility location. An urban planner wants to choose a location x ∈ R2 for a
new warehouse that minimizes the worst-case distance to n distribution centers, located at
y1, . . . , yn. This problem can be written as

minimize max
k=1,...,n

‖yk − x‖2

This problem is equivalent to the second order cone program

minimize t

subect to ‖yk − x‖ ≤ t, k = 1, . . . , n.

Here, we used an epigraph transformation.

Robust linear programming. Often, the parameters in optimization problems are un-
certain. In our supply example, we might not know the exact demand and instead have an
estimate. Working with the expected values can produce very ‘fragile’ solutions (i.e., a small
change in the parameters can cause the computed optimal solution to become infeasible).
Consider the LP

minimize cTx

subject to aTi x ≤ b, i = 1, . . . ,m.

There are two common approaches to handling uncertainty (we assume only the ai’s have
uncertainty, without loss of generality).

First, a deterministic approach: we require the constraints to hold for all ai in some
uncertainty set Ei. A common choice is the ellipsoidal uncertainty set.

Ei = {āi + Piu | ‖u‖2 ≤ 1},

where the expected value of ai, denoted āi, is the center of the ellipsoid, whose shape is
defined by the singular values and vectors of Pi. Then the robust LP

minimize cTx

subject to aTi x ≤ b ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx

subject to aTi x+ ‖P T
i x‖2 ≤ b, i = 1, . . . ,m.

This result holds because sup‖u‖2≤1(āi + Piu)Tx = āTi x+ ‖P T
i x‖2.

Second, a stochastic approach: we require the constraints to hold with probability η. We
assume that ai is Gaussian with mean āi and covariance Σi. Then

P
(
aTi x ≤ b

)
= Φ

(
b− āTi x
‖Σ1/2

i x‖2

)
,
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where Φ is the cumulative distribution function of the standard normal. This fact means
that the stochastic LP

minimize cTx

subject to P
(
aTi x ≤ b

)
≥ η i = 1, . . . ,m

with η ≥ 1/2 is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi i = 1, . . . ,m.

1.4 Geometric programs

Geometric programs allow us to tackle a wide class of problems with convex optimization by
using a log transform of the variables (this is a very powerful trick!). A monomial function
has the form

f(x) = cxa11 x
a2
2 · · ·xann , dom f = Rn

++,

with c > 0 and ai ∈ R. A posynomial is the sum of monomials. A geometric program has
the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

(4)

with fi posynomial and hi monomial. Since the variables xi are positive, we can use the log
transform, y = log x. For a monomial f , we have

f(ey1 , . . . , eyn) = exp

(
n∑
i=1

aiyi + log c

)
= exp(aTy + b).

Taking the logarithm of the objective (why can we do this?) and constraints in (4), we get
the equivalent convex problem

minimize log

(
K∑
k=1

exp
(
aT0ky + b0k

))

subject to log

(
K∑
k=1

exp
(
aTiky + bik

))
≤ 0, i = 1, . . . ,m

Gy + d = 0.

Geometric programs often come up in engineering design applications.3

3For some examples, see https://web.stanford.edu/~boyd/papers/gp_tutorial.html. The digital
circuit gate sizing example comes from this paper.
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Example: pipe design. A heated fluid at temperature T (degrees above ambient tem-
perature) flows in a pipe with fixed length and circular cross section with radius r. A layer
of insulation, with thickness w � r, surrounds the pipe to reduce heat loss through the
pipe walls. The design variables in this problem are T , r, and w. The heat loss is (approx-
imately) proportional to Tr/w, so over a fixed lifetime, the energy cost due to heat loss is
given by α1Tr/w. The cost of the pipe, which has a fixed wall thickness, is approximately
proportional to the total material, i.e., it is given by α2r. The cost of the insulation is also
approximately proportional to the total insulation material, i.e., α3rw (using w � r). The
total cost is the sum of these three costs. The heat flow down the pipe is entirely due to the
flow of the fluid, which has a fixed velocity, i.e., it is given by α4Tr

2 . The constants αi are
all positive, as are the variables T , r, and w. Now the problem: maximize the total heat
flow down the pipe, subject to an upper limit C max on total cost, and the constraints

Tmin ≤ T ≤ Tmax, rmin ≤ r ≤ rmax, wmin ≤ w ≤ wmax, w ≤ 0.1r.

The problem can be expressed as a geometric program as given. The problem is

maximize α4Tr
2

subject to α1Trw
−1 + α2r + α3rw ≤ Cmax

Tmin ≤ T ≤ Tmax

rmin ≤ r ≤ rmax

wmin ≤ w ≤ wmax

w ≤ 0.1r.

A bit of algebra yields the GP

minimize α−14 T−1r−2

subject to C−1maxα1Trw
−1 + C−1maxα2r + C−1maxα3rw ≤ 1

TminT
−1 ≤ 1, T−1maxT ≤ 1

rminr
−1 ≤ 1, r−1maxr ≤ 1

wminw
−1 ≤ 1, w−1maxw ≤ 1

10wr−1 ≤ 1.

Digital circuit gate sizing. (From [Boy+07].) We consider a digital circuit, consisting
of a number of logic gates, each with one output and one or more inputs. A path through
the circuit is a sequence of gates from a circuit input to a circuit output (e.g., 1→ 3→ 6 in
Figure 3). Consider the simple circuit in Figure 3. There are five paths through the circuit.
For each gate i = 1, . . . , n, we will choose a scale factor xi ≥ 1. The total circuit area is then

A =
n∑
i=1

aixi = aTx,
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Figure 3: Digital circuit used in GP example.

where ai is the area of gate i with unit scaling. The total power consumed is

P =
n∑
i=1

fieixi = pTx,

where fi is the frequency of gate i and ei is the energy lost when it transitions. Each gate’s
input capacitance Ci is an affine function of the scale factor, and its driving resistance is
inversely proportional to the scale factor:

Ci = αi + βixi, Ri = γi/xi.

Finally, the delay Di of a gate is the product of its driving resistance and the sum of the
input capacitances of the gates its output is connected to,

Di =

{
Ri

∑
j∈F (i)Cj if i is not an output gate

RiC
out
i if i is an output gate,

where F (i) is the set of gates whose input is connected to the output of gate i and Cout
i is

the load capacitance of the output gate. We can see that Di is a posynomial function of the
scale factors. Our goal is to choose the scale factors that minimize the worst-case delay D
for any path through the circuit. For our circuit, there are only 5 paths through the gates:
1, 3, 5, 1, 3, 6, 2, 3, 5, 2, 3, 6, and 2, 4, 6. Thus, the worst-case delay is

D = max{D1 +D3 +D5, D1 +D3 +D6, D2 +D3 +D5, D2 +D3 +D6, D2 +D4 +D6}.

We will constrain P ≤ Pmax and A ≤ Amax. It is clear that P , A, and Di are posynomials.
We can reformulate the max function as a GP by noticing that if f1(x) and f2(x) are
posynomials, then we can rewrite max{f1(x), f2(x)} using the epigraph trick. This allows
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us to find the minimum delay circuit by solving the geometric program

min. t

s.t. D1 +D3 +D5 ≤ t, D1 +D3 +D6 ≤ t

D2 +D3 +D5 ≤ t, D2 +D3 +D6 ≤ t

D2 +D4 +D6 ≤ t

Di =

{
Ri

∑
j∈F (i)Cj if i is not an output gate

RiC
out
i if i is an output gate

Ci = αi + βixi, Ri = γi/xi

aTx ≤ Amax, pTx ≤ Pmax

1/xi ≤ 1.

1.5 Log-concavity

A function f is log-concave if log f is concave. We mostly care about log-concave (vs. log-
convex) functions. Many common probability densities (e.g., Gaussians) are log-concave.
Even the uniform distribution is log concave (think of the extended value extension of this
function). Simple transformation of the definition of concavity yields the condition

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ

for λ ∈ [0, 1]. This says that the function at an average is greater than the geometric mean
of the endpoints.

Some properties. Many important composition properties of log-concave functions can
be worked out in the same way we worked out properties of convex functions. Many have
natural probability interpretations. These properties include

• Product preserves log-concavity (e.g., joint distribution of independent random vari-
ables)

• The sum does NOT necessarily preserve log-concavity (e.g., mixture distributions are
not necessarily log-concave)

• Integration preserves log-concavity (e.g., marginal distributions & CDFs of log-concave
distributions)

– Convolutions are log-concave, so the pdf of the sum of random variables with
log-concave densities is log-concave.

– If C is a convex set and y is a random variable with a log-concave pdf, then
f(x) = P(x+ y ∈ C) is log-concave (e.g., yield functions)
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2 Quasiconvex optimization

A function f is quasiconvex is dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α ∈ R. Equivalently, we have that

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for all x, y in dom f and λ ∈ [0, 1]. In R, these functions are unimodal: they are monotone
decreasing to some point and then increasing afterwards. Similar to convexity, we say that f
is quasiconcave if −f is quasiconvex (equivalently, if every superlevel set is convex). Finally,
we say that f is quasilinear if it is both quasiconvex and quasiconcave. Some examples of
these functions are

•
√
|x| is quasiconvex on R

• dxe = ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

• log x is quasilinear on R++

• f(x) = x1x2 is quasiconcave on R2
++

• The linear fractional function we defined previously is quasilinear where the denomi-
nator is positive

• The distance ratio f(x) = ‖x−a‖2/‖x−b‖2 is quasiconcave on dom f = {x | ‖x−a‖2 ≤
‖x− b‖2}

A more complicated example is the internal rate of return, defined as

IIR(x) = inf

{
r ≥ 0 |

n∑
i=0

xi(1 + r)−i = 0

}
.

This is the smallest interest rate r such that the present value of the cash flows xi is zero.
We assume that x0 < 0 and x0 + · · ·+ xn > 0. This function is quasiconcave on Rn

++, since
the superlevel set is the intersection of open halfspaces:

{x | IIR(x) ≥ R} =
⋂

0≤r<R

{
x |

n∑
i=0

xi
(1 + r)i

> 0

}
Note that the sum of quasiconvex functions is NOT quasiconvex. For example, try adding
two unimodal functions in R (e.g.,

√
|x| and

√
|x− 2|). Like convexity, a number of op-

erations preserve quasiconvexity. Importantly, if fi is quasiconvex, then the nonnegative
weighted maximum

f(x) = max{w1f1(x), . . . , wmfm(x)}
with wi ≥ 0 is also quasiconvex.
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Solving quasiconvex problems. If f0 is quasiconvex, then there exists a family of func-
tions φt such that φt is convex in x for a fixed t and the t-sublevel set of f0 is a 0-sublevel
set of φt:

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0.

To see that such a representation always exists, recall that the sublevel set is convex and
consider

φt(x) =

{
0 f(x) ≤ t

∞ otherwise.

For a more practical example, consider the function f0(x) = p(x)/q(x) where p is convex, q
is concave, and we have that p(x) ≥ 0 and q(x) > 0 on dom f0. Then we can take

φt(x) = p(x)− tq(x),

which is convex for t ≥ 0. This formulation allows us to solve quasiconvex optimization
problems via a series of convex feasibility problems

minimize 0

subject to φt(x) ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(5)

If (5) is feasible, then t ≥ p?. If not, t ≤ p?. Given bounds l and u such that p? ∈ [l, u] and
some tolerance ε, the bisection method for quasiconvex optimization is

1. Let t = (l + u)/2

2. Solve the convex feasibility problem (5)

3. If (5) is feasible, set u = t, else l = t

4. Repeat until u− l ≤ ε

This method requires exactly dlog2(1/ε)e iterations. Note that at termination, you have both
a feasible point with objective value u and a certificate that the objective value is greater
than l.

Example: Von Neumann growth problem. Consider an economy with n sectors, each
of which has an activity level xi > 0 in the current period and x+i > 0 in the next period.
The economy consists of m goods. A set of activity levels x consumes bTi x and produces aTi x
of good i. The goods consumed in the next period cannot exceed the goods produced in the
current period. In Von Neumman’s growth problem, we wish to find a set of activity levels
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that maximizes the minimum growth rate. This problem can be phrased as the quasiconvex
optimization problem

max. min
i
x+i /xi

s.t. Bx+ ≤ Ax

x+ ≥ 0

Since this problem is homogenous in x and x+, we can replace the implicit constraint that
x > 0 with the explicit constraint x ≥ 1. To deal with the quasiconcave objective function,
we will first instead deal with its negative4

f(x) = −min
i
x+i /xi = max

i
−x+i /xi.

Now, consider that for a fixed t, we have

max
i
−x+i /xi ≤ t ⇐⇒ −x+i − xit ≤ 0 for all i.

Thus, we can take φt(x
+, x) = maxi{−x+i − xit}, which is convex, as it is the pointwise

maximum of a set of affine functions.
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