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We care about convex optimization problems because (for the most part) we can solve
them1. Nonconvex problems are often solved on a case-by-case basis, as there are no general-
purpose algorithms. Here, we develop tools to answer the question, “Is it convex?”. We look
at the basic properties of convex sets and functions and review important examples, largely
following [BV04, §2-3]. Our goal is to develop a calculus of convex functions that will allow
us to prove complicated functions are convex (or concave) by constructing them from a set
of simple functions with known convexity and convexity-preserving composition rules. This
idea forms the basis of disciplined convex programming (DCP), which we will use heavily in
the remainder of the course.

1 Convex Sets

We call a set S convex if for any two points x, y ∈ S, the line segment between x and y lies
in S. Equivalently, we require that

λx+ (1− λ)y ∈ S (1)

for all x and y in S and λ ∈ [0, 1]. We call any point x of the form

x = λ1x1 + · · ·+ λkxk

with λ1 + · · · + λk = 1 and λi ≥ 0 a convex combination of x1, . . . , xk. The convex hull of
a set S, denoted conv(S), is the set of all convex combination of points in S. The convex
hull of a set S is always convex.

1From Richard Feynman’s Lectures on Physics: “Finally, we make some remarks on why linear systems
are so important. The answer is simple: because we can solve them! So most of the time we solve linear
problems. Second (and most important), it turns out that the fundamental laws of physics are often linear.”
If you substitute “convex optimization” for “linear systems” and “optimization problems in practice” for
“the fundamental laws of physics,” I think the same sentiment holds.
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Convex cones. One important class of convex sets are the convex cones. Most convex
optimization solvers deal with problems in conic form (i.e., the constraint sets are all convex
cones). We call a set C a cone if for every x ∈ C and λ ≥ 0, we have that λx ∈ C. A convex
cone is a cone that is also convex. Equivalently, this means that for any x1, x2 in C and λ1,
λ2 ≥ 0, we have

λ1x1 + λ2x2 ∈ C.
Visually, this sweeps out a pie slice. We define a conic combination and conic hull analogously
to the convex case.

1.1 Simple examples

The following sets are some simple examples of convex sets, many of which we will encounter
often throughout the remainder of the course.

Hyperplans and halfspaces. A hyperplane is a set of the form {x | aTx = b}, where
a 6= 0. A halfspace is a set of the form {x | aTx ≤ b}, where a 6= 0. For both of these sets,
we refer to a as the normal vector. Hyperplanes are both convex and affine (every linear
combination2 of points in the set also lies inside the set), and halfspaces are convex. These
facts can be verified directly with some algebra.

Figure 1: A hyperplane (left) and halfspace (right).

Norm balls and norm cones. Recall that a norm is a function f : Rn → R that satisfies

• ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t|‖x‖ for t ∈ R (homogeneity of degree 1)

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

A norm ball with center xc and radius r is the set {x | ‖x− xc‖ ≤ r}. A special case of this
is a Euclidean ball, where we take ‖ · ‖ to be the `2 norm, denoted by ‖ · ‖2. Another special
case is an ellipsoid, where we take the norm ‖x‖P =

√
xTPx for some positive definite matrix

P . A norm cone is a set of the form {(x, t) | ‖x‖ ≤ t}. The Euclidean norm cone is called
the second-order cone, which is an important set for convex optimization solvers.

2A linear combination of points x and y is the set of points αx+ βy where α, β ∈ R.
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Figure 2: The `1 (left), `2 (center), and `∞ (right) norm balls centered at the origin.

Polyhedra and polytopes. A polyhedron is the solution of finitely many linear inequal-
ities and equalities:

{x | Ax = b, Cx ≤ d}.

We take the inequality to be componentwise. Linear programming problems are precisely
those in which we minimize or maximize a linear objective over a polyhedral set. Note that
a bounded polyhedron is sometimes refered to as a polytope (but some authors use the
opposite convention). Important special cases are the nonnegative orthant, {x | x ≥ 0}, and
the probability simplex, {x | x ≥ 0,

∑
i xi = 1}.

Figure 3: A polyhedron (left) and the probability simplex (right).

1.2 Operations that preserve convexity

Sometimes, we can establish convexity by directly applying the definition (1). Often, it is
easier to build up a set from primitive convex sets and operations that preserve convexity.
In this constructive calculus of convex sets, we can think of sets corresponding to expression
trees: each leaf of the tree is a primitive set, and each interior node is a convexity-preserving
operation. This calculus allows us to easily verify complicated sets are convex even when
we do not have a simple description of the set. Some operations that preserve convexity are
below.

Intersection. The intersection of any number (possibly infinite) of convex sets is convex.
A simple example is that a polyhedron is the intersection of finitely many halfspaces. A more
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complex example is the positive semidefinite cone, which is the set of positive semidefinite
matrices, i.e., all symmetric matrices X such that zTXz ≥ 0 for all vectors z. We denote the
set of symmetric matrices by Sn and the set of positive semidefinite matrices by Sn+. While
convexity can be proved directly from the definition, a slick proof is to recognize that

Sn+ =
⋂
z 6=0

{X ∈ Sn | zTXz ≥ 0},

which is the intersection of an infinite number of halfspaces parameterized by the vector z.
(The function zTXz is linear in X for a fixed z). In fact, the converse is also true: every
closed convex set is a intersection of halfspaces (usually infinitely many).

Affine function. An affine function has the form f(x) = Ax+ b for some A ∈ Rm×n and
b ∈ Rm. Suppose the set S ⊆ Rn is convex. Then the image of S under f ,

f(S) = {f(x) | x ∈ S},
and the inverse image of S under f ,

f−1(S) = {x | f(x) ∈ S},
are both convex. The inverse image is defined even if the function f is not invertible. Some
simple examples of affine functions are scaling, translation, rotation, and projection. A more
complex example is the hyperbolic cone

{x | xTPx ≤ (cTx)2, cTx ≥ 0},
where P ∈ Sn+ and c ∈ Rn. This set is convex since it is the inverse image of the second-order
cone,

{x | xTx ≤ t2, t ≥ 0},
under the affine function f(x) = (P 1/2x, cTx). Similarly, ellipsoids can be written as the
image of the Euclidean ball under an affine function:

{y | (y − xc)P−1(y − xc) ≤ 1} = f ({x | ‖x‖2 ≤ 1}) ,
where f(x) = P 1/2x+ xc.

Perspective function. Recall that the perspective function f : Rn×R→ Rn is f(x, t) =
x/t. If S ⊆ dom f is convex (dom f indicates the domain where f is defined), then the set

f(S) = {f(x, t) | (x, t) ∈ S}
is also convex. An interpretation is that a convex object viewed through a pin-hole cam-
era yields a convex image. More generally, this result holds for linear fractional functions
f(x) = (Ax+ b)/(cTx+ d). This construction may seem esoteric at first, but it comes up in
surprisingly many applications. As one example, consider the conditional probability

fij = P(u = i | v = j) =
pij∑n
k=1 pkj

.

This is a linear fractional function. Thus, if C is a convex set of joint probabilities for (u, v),
then the set of conditional probabilities of u given v is also convex.
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1.3 Separating and supporting hyperplanes

We briefly cover arguably the most important theorem in convex analysis: the separating
hyperplane theorem. This theorem states that if C and D are nonempty disjoint convex sets,
then there exists a hyperplane that separates C and D. In other words, for nonempty convex
C and D, such that C ∩D = ∅, there exist a 6= 0 and b such that aTx ≤ b for all x ∈ C and
aTx ≥ b for all x ∈ D. The hyperplane {x | aTx = b} is called the separating hyperplane for
the sets C and D. The machine learning interpretation of this theorem is that there exists
a linear classifier that distinguishes between disjoint convex sets.

Figure 4: A seperating hyperplane (left) and a supporting hyperplane (right).

The supporting hyperplane theorem directly follows. Suppose C is a convex set and x0 is
a point in the boundary of C. Then apply the separating hyperplane theorem to S1 = {x0}
and S2, the interior of C. This gives a hyperplane that is tangent to C at x0 and defines a
halfspace that contains C. (Recall the connection between convex sets and the intersection
of halfspaces.)

2 Convex Functions

Recall from the previous lecture that a function f : Rn → R is convex if its domain is a
convex set and for all x, y ∈ dom f and all λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2)

Geometrically, this mean that the line segment connecting the points (x, f(x)) and (y, f(y))
lies above the graph of f . In other words, the mixture of the endpoints is greater than the
function evaluated at the mixture of the points. A function is strictly convex if (2) holds
with strict inequality. A function is strongly convex with parameter m > 0 if f − (m/2)‖x‖22
is convex. A function is concave if −f is convex. It often simplifies the notation to extend
a convex function to all of Rn by defining its value to be ∞ outside of the domain:

f̃(x) =

{
f(x) x ∈ dom f

∞ otherwise
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We call f̃ the extended-value extension of f . We will see some more general notions of con-
vexity later in the course, which allow us to tackle broader classes of optimization problems.

First order condition for convexity. If f is differentiable, then f is convex if and only
if for all x and y in dom f , we have

f(y) ≥ f(x) +∇f(x)T (y − x).

This condition says that the first order approximation (Taylor expansion) of f lies below the
graph of f , i.e., it is a global underestimator of f . In unconstrained convex optimization,
this condition immediately tells us that if ∇f(x) = 0, then x minimizes f(x).

Second order condition for convexity. If f is twice differentiable, then f is convex if
and only if for all x in dom f , we have

∇2f(x) � 0.

For simple functions, this condition often provides an easy proof of convexity. For example,
consider the least-squares function

f(x) = ‖Ax− b‖22 = xTATAx− 2bTAx+ bT b.

The Hessian is ∇2f(x) = 2ATA. Since ATA is positive semidefinite, f is convex.

Simple examples. For one-dimensional functions, we can easily check for convexity by
looking at the graph of f . Some examples of convex functions where x ∈ R are

• Affine functions f(x) = ax+ b (these are both convex and concave).

• Exponential f(x) = eax for any a ∈ R.

• Powers f(x) = xp on R++ for p 6∈ [0, 1] (it’s concave for p ∈ [0, 1]).

• Powers of absolute value f(x) = |x|p for p ≥ 1.

• Negative entropy f(x) = −x log x for x ∈ R+. (f(x) = log x is concave.)

Some examples of convex function with x ∈ Rn are

• Norms, e.g., ‖x‖2 =
√∑n

i=1 x
2
i , ‖x‖1 =

∑n
i=1 |xi|, ‖x‖∞ = maxi |xi|.

• Max function f(x) = max{x1, . . . , xn}.

• Log-sum-exp f(x) = log
∑

i e
xi . (Sometimes called the softmax function.)

• Quadratic functions f(x) = xTPx+ qTx+ r for P � 0.
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• Quadratic over linear function f(x) = x2/y for y ∈ R++.

• The indicator function of a convex set, IC(x) =

{
0 x ∈ C
∞ otherwise

.

Some examples of concave functions are

• Min function f(x) = min{x1, . . . , xn}.

• Log determinant f(x) = log det(X) for X � 0.

• Geometric mean f(x) = (
∏n

i=1 xi)
1/n

.

• Log CDF of a Gaussian f(x) = log Φ(x) for x ∈ R.

Our aim will be to develop a calculus of convex functions using these atoms and convexity-
preserving operations.

The epigraph. The epigraph of a function f is defined as

epi f = {(x, t) ∈ Rn ×R : f(x) ≤ t},

which is the set of all points above the function. This construction connects convex sets
with convex functions. A function f is convex if and only if its epigraph is a convex set. In
addition, the alpha sublevel sets of a convex function

Sα = {x ∈ Rn : f(x) ≤ α}

are convex sets. (The converse is not true.)

Jensen’s inequality. Jensen’s inequality is simply a generalization of (2) to expectations.
It states that for a convex function f and random variable X,

f(E[X]) ≤ E[f(X)].

It includes the standard definition as a special case: consider a random variable that takes
value x with probability λ and y with probability 1− λ.

Verifying convexity. We just saw many ways to verify the convexity of a function. We
can directly apply the definition. We can try to equivalently show that f restricted to any
line is convex. We can show the Hessian is positive semidefinite. Or we can show that f
is obtained by composing simple convex functions with operations that preserve convexity.
For the remainder of the course, we will concentrate on the last technique, which forms the
basis of disciplined convex programming (DCP).
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2.1 Operations that preserve convexity

For the most part, we will identify convex functions by building them from simple functions
with known convexity (or concavity) and calculus rules. Again, we can think of a convex
function as an expression tree with leaves as atoms (simple functions) with known convexity
and nodes as operations that modify convexity in known ways.

Simple rules. The following rules preserve convexity and can be directly verified:

• Nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex.

• Sum: f , g convex =⇒ f + g convex.

• Affine composition: f convex =⇒ f(Ax+ b) convex.

The properties above immediately imply that any regularized norm minimization problem,
which has the form

minimize ‖Ax− b‖+ λ‖x‖,

is convex for any choice of the norms and λ ≥ 0.

Pointwise maximum and supremum. A less obvious rule is that if f1, . . . , fm are convex
functions, then f(x) = max{f1(x), . . . , fm(x)} is convex. Examples of convex functions built
from this rule include piecewise linear functions of the form

f(x) = max
i=1,...,m

(aTi x+ bi),

and the sum of the largest k components of a vector,

f(x) = x[1] + x[2] + · · ·+ x[k],

where x[i] is the ith largest component of x. The second example follows from considering the(
n
k

)
linear functions that order each unique set of k components of x as the first k components.

The pointwise supremum is also convex: if f(x, y) is convex in x for each y ∈ A, then the
function

g(x) = sup
y∈A

f(x, y)

is convex. An example built from this rule is the maximum eigenvalue of a symmetric matrix.
which we can write as

λmax(X) = sup
‖y‖2=1

yTXy.

This function is linear in X for each fixed y, so the pointwise supremum is convex.
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Composition. Consider the function f(x) = h(g(x)) = h(g1(x), . . . , gk(x)) for g : Rn →
Rk and h : Rk → R. We can show that f is convex if

• gi convex, h convex, h̃ nondecreasing in each argument.

• gi concave, h convex, h̃ nonincreasing in each argument.

Similarly, f is concave if

• gi concave, h concave, h̃ nondecreasing in each argument.

• gi convex, h concave, h̃ nonincreasing in each argument.

In the scalar case, we can directly prove this by examining the second derivative

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x).

When we can deduce the sign, we can deduce convexity. This rule forms the basis of disci-
plined convex programming (DCP). In fact, you can get away with only knowing this rule;
we can use it to derive all the other rules. For example, since max is a convex, increasing
function, the pointwise maximum of convex functions is convex. This rule also illustrates
the importance of how we parse a function. For example, consider

f(x) = log
m∑
i=1

exp(gi(x))

where gi are convex. We cannot parse this from the inside; we have to parse it with h as the
entire log-sum-exp function.

Partial minimization. This rule will come up again when we examine duality theory. If
f(x, y) is convex in (x, y) and C is a convex set, then the function

g(x) = inf
y∈C

f(x, y)

is convex. This type of minimization also forms the basis of dynamic programming. Examples
include partial minimization of a convex quadratic (related to the Schur complement) and
the distance to a convex set

dist(x, S) = inf
y∈S
‖x− y‖2,

which is convex if S is convex.
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Perspective. Like in the case of convex sets, the projective transformation on the epigraph
of f preserves convexity. Specifically,

g(x, t) = tf(x/t)

is convex if f is convex. An important example is the relative entropy function

g(x, t) = −t log(x/t) = t log t− t log x,

which is convex because f(x) = − log x is convex. From the convexity of g, we can establish
the convexity of the Kullback-Leiber divergence

DKL(p, q) =
n∑
i=1

pi log
pi
qi
.

The perspective transformation comes up often and in surprising places.

2.2 Disciplined Convex Programming (DCP)

DCP provides a constructive proof of convexity for a function, which is represented as an
expression tree. Each leaf is a variable or a constant, and nodes are functions with known
convexity, monotonicity, and sign properties. Convexity of the function is verified via com-
position rules3. Importantly, DCP verification is a sufficient but not necessary condition
for convexity. It’s easy to build a DCP parser from the information in this lecture. Tools
like Convex.jl also include a canonicalizer that transforms a DCP into a form that can
be accepted by a solver (or in the case of Convex.jl, into a form that is accepted by the
modeling framework JuMP.jl4).

Examples. We consider two examples5 of DCP analysis. You will work through several
more on your homework. First we show that for x < 1, y < 1, the function

f(x, y) =
(x− y)2

1−max{x, y}

is convex. We begin by drawing out the expression tree.

• The leaves x, y, 1 are affine expressions.

• The function max is convex; the function x− y is affine.

• The function 1−max is concave.

• The function u2/v is convex, monotone decreasing in v for v > 0.

3Check out https://dcp.stanford.edu/rules
4Technically speaking, Convex.jl directly uses MathOptInterface.jl, the backend for JuMP.jl.
5These examples are taken from https://web.stanford.edu/~boyd/papers/pdf/cvx_dcp.pdf
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• Hence, the function is convex.

As a second example, consider the function

f(x) =
√

1 + x2.

Here, applying the composition rules directly does not work. However, if we recognize that

f(x) =
√

1 + x2 =

∥∥∥∥[1
x

]∥∥∥∥
2

,

then the function is clearly convex. Often, you will have to apply some creativity to find a
suitable representation of the function for DCP verification.

From DCP to optimization. This lecture is necessarily somewhat dry for us to build
up the machinery necessary to tackle convex optimization problems. Recall that a convex
optimization problem has the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where all the fi’s are convex. From the calculus developed above, we know that this problem
is the minimization of a convex function over a convex set. DCP provides a means for a
computer to verify that each of these functions is indeed convex and transform the problem
into a form that can be solved by available convex optimization software. Importantly, for
these problems, we have that

1. All locally optimal points are globally optimal.

2. An optimal point can be found efficiently.

An aside on tractability. It is important that a optimization problem is not only convex
but also tractable. For example, consider the problem

minimize f0(x)

subject to x ∈ {0, 1}n.

The constraints are clearly not convex, but we can rewrite this problem as

minimize t

subject to t ≥ f(x), for all x ∈ {0, 1}n.

This problem is a single variable convex optimization problem, but it has 2n constraints,
so it is not very useful. To write the problem, we have to evaluate f at every point in the
set {0, 1}n! Roughly speaking, we want the number of constraints m to be polynomial in
n for tractability. Of course, a problem often has multiple equivalent representations and
heuristics like convex relaxations can work very well in practice, which is why optimization
can be somewhat of an art.
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