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1 Mathematical optimization

A mathematical optimization problem has the form

minimize  fo(x)
subject to  fi(z) <b;, i=1,...,m.

We call the vector z € R™ the optimization variable, fy : R” — R the objective function,
and f; : R — R the constraint functions. A solution (or optimal point) z* has the smallest
value fy among all the vectors that satisfy the constraints. These constraints often have the
interpretation of budgets, with b; being the amount of resource ¢ that is available. Note that
this model includes maximization problems by simply negating the objective function and
equality constraints by adding two inequality constraints.

We typically categorize optimization problems by the mathematical properties of their
objective function and constraints. In this course, we will focus on conver optimization
problems: problems in which the objective function and all the constraint functions are
convex. A convex function satisfies the inequality

filax + By) < afi(xz) + Bfi(y) (1)

for all z, y € R" and all o, § € R with a+ 8 = 1. This inequality tells us that the function
looks bowl-shaped or, more formally, that the function lies below all of its chords. (We
will see equivalent definitions of convexity in the next lecture.) A huge number of practical
problems can be formulated as convex optimization problems, and we can (usually) solve
these problems efficiently with modern open source and commercial solvers.

1.1 Examples
Portfolio optimization.

e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, max. risk (variance)

e objective: risk adjusted return or Sharpe ratio



Silicon phontonic design.
e variables: material at each point in the device

e constraints: laws of physics (electromagnetic wave equations), available materials

e objective: maximize efficiency (e.g., focusing efficiency of a lens)

Data fitting.

e variables: parameters of a model
e constraints: prior information, parameter limits

e objective: misfit or prediction error, plus regularization term

Truss design.

e variables: cross sectional area and location of each bar
e constraints: laws of physics (statics), bounds on areas, total weight

e objective: minimize elastic stored energy

Maximum flow through a graph.

e variables: flow through each edge
e constraints: flow conservation at each node, bounds on flow through each edge

e objective: maximize total flow (from source to sink)

1.2 Solving optimization problems

In general, optimization problems are very difficult to solve. The methods to find a solution
or approximate solution all have tradeoffs: either the point returned by the method is not
guaranteed to be optimal (or even feasible!), or the runtime of the method is exponential in
the worst case. (In TCS terms, these problems are NP-hard.) Fortunately, many very useful
optimization problems, including least-squares, linear programming programs, and convex
optimization problems, can be solved efficiently. Certain classes of NP-hard optimization
problems, like integer linear programming, can be solved efficiently in practice! for many
problems of interest, but these problems are outside the scope of this course.

We’ll start our study of optimization by looking at least-squares and linear programming,
two of the most common types of optimization problems solved in practice. Then, we’ll return
to the common parent, convex optimization.

!These problems, for example the scheduling problem for airlines, are solved many times every day.
However, the methods have worse scaling, worst-case performance, and generalization than those used for
convex optimization problems.



2 Least-squares to convex optimization

2.1 Least-Squares

The least-squares problem has the form
m
minimize ||Az — b||3 = Z(aiTx — b))%
i=1
Here A € R™™ (with m > n) is the data matrix and € R™ is the optimization variable.
Variants include regularization terms and weights on the summands. This problem can be
solved via a set of linear equations,

AT Az = ATh,

which has the analytical solution 2* = (AT A)~1ATb. Geometrically, the solution gives the
point Az* that is closest to b, i.e., the residual Az* — b is orthogonal to range(A). We have
efficient algorithms? and very good software implementations to solve this problem quickly
and reliably. If A is dense, the problem can be solved in O(n?m) time?, and if A is sparse,
the problem can often be solved much faster. We consider solving least-squares problems to
be a mature technology; these problems can be readily solved by practitioners who do not
know the mathematical or algorithmic details.

2.2 Linear programming
A linear program (LP) has the form
minimize ¢’
subject to aiTx <, i1=1,...,m.

Note that the LP has the form of (1) with f; linear for i« = 0,...,m. Recall that a linear
function satisfies

flox + By) = af(z) + Bf(y)

for all z, y € R™ and all a, f € R. (Compare this with the definition of convexity (1).)
Unlike least squares programs, linear programs have no analytical formula for the solution.
Fortunately, there are efficient algorithms and software implementations to solve these. The
first algorithm, the simplex method, dates back to Dantzig in 1947 and is still widely used

2The most common way to solve least-squares is via the QR factorization; forming the normal equations
and then solving them is numerically unstable. See the book by Trefethen and Bau [TBI97] for more.

3Some exciting recent developments in randomized numerical linear algebra allow us to solve these prob-
lems even faster. See the survey by Martinsson and Tropp [MT20] for more.

4While Dantzig popularized linear programming in the West, after first using it for planning problems
faced by the US Air Force, the formulation dates back to Kantorovich’s work [Kan39] in the Soviet union,
which proposed using LPs to organize production about a decade earlier. (A great novel on the failings of
planned economies is Red Plenty.) However, it took around 20 years for Kantorovich’s work to be published
in western literature.



today. Algorithms to solve these programs take roughly O(n?m) time (with a larger and less
well-characterized constant than least-squares) if m > n. We also consider them a mature
technology: there is software that not only quickly solves linear programs but also converts
input problems into a standard form.

Linear programs are not as easy to recognize as least-squares problems. In fact, LPs
can be used to solve many problems involving nonlinear functions. There are a number
of standard tricks to convert problems into a solver-accepted formulation. We will see two
examples below, which are variants on the least-squares norm minimization problem.

!~ (Chebyshev) norm minimization. Consider the least-squares problem with the
squared /5 norm replaced with the /., norm:

minimize ||Az — b||o = max|al v — b;].
2

Note that we have |y| < z if and only if —z < y < z. We can convert this problem into
an LP by introducing a new variable ¢ € R that we require to be greater than the absolute
value of every element of Az — b. Thus the problem above is equivalent to the LP

minimize ¢
subject to —t <alxz —b<t, 1=1,....m.

¢; norm minimization. Consider the least-squares problem with the squared ¢, norm
replaced with the ¢; norm:

m
minimize |[Az —b||; = Z|aiT:E — b;l.

i=1

We can convert this problem into an LP by introducing a new variable ¢ € R™. The technique
is the same as for the /., norm minimization problem above, but now we have a new variable
t; for each element of Ax — b. Thus the problem above is equivalent to the LP

minimize 17t

subject to —t; <alx —b <ty 1=1,...,m.

2.3 Convex optimization

A convex optimization problem has the form

minimize  fo(x)
subject to  fi(x) <b, i=1,....m

with f; convex for ¢+ = 0,..., m. Recall that a function f is convex if
fOz+ (1= Ny) <Af(x)+ (1 =N f(y)

4



for all , y € R™ and all A € [0,1]. Convex optimization includes least-squares and linear
programs as special cases (why?).

Like linear programs, there is usually no analytical solution to a convex optimization
problem. However, there are efficient algorithms and software to solve moderately sized prob-
lems, and a well-established literature helps guide the implementation of custom, large-scale
solvers. Very roughly, the computational time for each step in an interior point algorithm is
max{n?®,n*m, F'}, where F is the cost of evaluating the f;’s and their first and second deriva-
tives. Approximately 20-100 steps of an interior point solver® are usually required produce a
solution that is accurate to machine precision. This complexity is often only a modest factor
slower than least-squares, despite convex optimization having much more expressive power.
Convex optimization is not quite a technology yet (it is for some problem classes), but it is
getting there quickly.

Using convex optimization is much more difficult than using least-squares or linear pro-
gramming, as it is often difficult to recognize if a problem is convex. In fact, many problems
are not convex as stated but can be transformed into a convex optimization problems. For
example, in circuit design, we often work with the logs of the lengths and widths of the
components. In statistics, we often look for the inverse of the covariance matrix rather than
the covariance matrix itself. This course is about learning to recognize these problems as
convex and the tricks to transform them into forms that are solvable.

A note on nonlinear programming. You may hear about a related problem called a
nonlinear program (NLP®). These are optimization problems in which the objective or con-
straints are not linear but not known to be convex. There are no effective methods for solving
these problems in general. Often, we have to resort to heuristics (e.g., local optimization,
convex relaxations) or have to accept worst-case exponential complexity. Fundamentally,
this decision is a tradeoff between optimality and speed. In some sense, the distinction
between LPs and NLPs is a historic one, dating from the period of time when it was not
widely known that some nonlinear optimization problems are much more difficult to solve
than others. In his 1993 STAM Review survey paper [Roc93], Rockafellar said:

In fact the great watershed in optimization isn’t between linearity and nonlin-
earity, but convexity and nonconvexity.

Convex analysis has been a well-developed field of mathematics since around 1970 (the
canonical reference being [Roc70]), but the first formal argument for the efficiency of convex
optimization dates to Nemirovski and Yudin in 1983 [NY83]. Later, Nesterov and Ne-
mirovski [NN94] showed the effectiveness of interior point methods on these problems.

5In the past ten years, first order solvers for large-scale problems have become much more popular. We’ll
discuss the differences between solvers later in the course.
6Sorry ML people, we had it first.



3 Example: radiation treatment planning

In radiation treatment, radiation is delivered to a patient to kill the cells in a tumor, while
minimally affecting the surrounding healthy tissue. Radiation is delivered via n beams,

which have intensities xq, ..., z, and must satisfy
0 <ux; <1 1=1,...,n.
The tissue of the patient is divided into m voxels, labeled ¢ = 1,...,m. The dose y; delivered

to voxel 7 is linear in the beam intensities:
n

Y = E ai; %5, 1=1,...m.

j=1

The matrix A € R™" is known. A subset of the voxels correspond to the tumor region,
while the others correspond to healthy tissue. Our goal is to find the beam intensities = that
minimize the dose in the healthy tissue while ensuring the dose in the tumor is above some
threshold. We model this by introducing a target dose d?arget € R, for each voxel i and
minimizing the squared deviation from this target. With this objective, the optimization
problem is ”
minimize [ly — d*=|3
subject to y = Ax (2)
0 <o M

We’ll consider four approaches to this problem: two using least-squares, one using linear
programming, and one using convex optimization. Only the last approach solves the prob-
lem (2) exactly. The others are heuristics but may work quite well in many cases. (In fact,
these kinds of heuristics are often used in practice for engineering design. If you recognize
this in your field, you have an opportunity to easily improve the state of the art!)

Approximate solution using least-squares. The problem (2) obviously cannot be han-
dled directly via least-squares. One approximate approach is to solve the problem

minimize ||Ax — d""& |3,

and then round z; to the interval [0, /™*]. This procedure, before rounding, gives the
intensities in Figure 1. Red lines indicate the bounds of the feasible region. After rounding
the beam intensities to a feasible point, the value of the objective is 3.474. The residuals
are shown in Figure 2. A better approach is to use weighted least-squares:®

minimize ||Az — d***8"(|3 + ij(xj — [™mex/2)2,

=1

"This problem is modified from [Fu+19] (https://web.stanford.edu/~boyd/papers/conrad.html). I
significantly simplified the problem, so if you’re interested in learning more, check out the paper!
8Note that this problem still can be solved with standard least-squares solvers.



Least squares beam intensities, f(z*) = 3.474 Linear program beam intensities, f(z*) = 2.06 Convex problem beam intensities, f(z*) = 1.368
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Figure 1: Beam intensities for the least-squares solution (left), linear programming solution
(center), and convex optimization solution (right). Red lines indicate intensity constraints.
The corresponding objective values are 3.474, 2.060, and 1.368 respectively.

Least squares residuals, f(z*) = 3.474 Linear Program residuals, f(z*) = 2.06 Convex program residuals, f(z*) = 1368
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Figure 2: Residuals Az* — d"&" for the least-squares solution (left), linear programming
solution (center), and convex optimization solution (right).

This problem penalizes the variable z; if it is far from the middle of the feasible interval,
I™2x /2. We can start the weights at w; = 0 and then iteratively adjust the weights until all
x; € [0,1™*]. Of course, this is still an approximate (i.e., suboptimal) solution in general,
although with careful and time consuming tuning, the true optimal value may be attained.

Approximate solution using linear programming. All the constraints are clearly
linear. Thus, another heuristic approach is to modify the objective, then use linear program-
ming. One possible relaxation is

minimize ||y — d*"&||,
subject to y = Ax
O S T S Imax’

which can be converted into a linear program using the techniques we saw earlier. Note that
instead of using the ¢; norm, we could use the /., norm, or a combination of both the /¢,
and /., norms. Intensities found via this approach are shown in Figure 1, and the residuals
are shown in Figure 2. Note that the /; norm can lead to the presence of large outliers;
the maximum and minimum residual from this approach are significantly greater than those
from the other approaches. The value of the objective is 2.060.



Solution via convex optimization. It can be directly verified that the problem (2) is
convex; the objective is convex and the constraints are linear. Thus, the problem as written
can be solved via standard convex optimization software. Intensities found via this approach
are shown in Figure 1, and the residuals are shown in Figure 2. Note that this solution not
only has the smallest objective value, but also has the tightest clustering of residuals. (And in
this application, it’s likely very important that we do not over-radiate or under-radiate cells.)
The value of the objective is 1.368. In general, many problems in practice are still solved
via heuristic methods that are similar to those introduced above. We will see that convex
optimization both provides a means to tackle these problems directly and greatly expands
the set of problems we can tackle at all. A great reference for further reading, beyond what
we have time to cover in the course, is the book by Boyd and Vandenberghe [BV04].
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